COURSE OUTCOME B.Sc/B.A I SEMESTER

1.1: Differential Calculus:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions, concepts and objectives of
	limit, continuity and differentiability.
CO-2	By the end of this unit the student will be able to learn Lebnitz's theorem, Rolle's theorem
	and Taylor's theorem with Lagrange's and Cauchy's form of remainder.
CO-3	By the end of this unit student will be able to expand the functions by Taylor's series and
	Maclaurin's series. Also students are able to learn partial differentiation and Indeterminate
	forms.
CO-4	By the end of this unit student will be able to solve problems of Maxima and Minima,
	tangent and normals, curvature, asymptotes and singular points. Also student will be in a
	position to trace a curve in Cartesian form and polar form.

B.Sc/B.A II SEMESTER

1.2: Differential Equations:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with basic definitions, concepts of ordinary
	differential equations. Student will be able to solve the differential equations of first order and first degree.
CO-2	By the end of this unit the student will be able to solve the differential equations of first order and higher degree. Also students will be able to learn Wronskian and its properties.
	And solving a differential equation by reducing its order.
CO-3	By the end of this unit student will be able to solve the linear differential equations with constant coefficients buy evaluating the complementary function and particular integral.
CO-4	By the end of this unit student shall be familiar with basic definitions, concepts of partial differential equations, formation of first order partial differential equations. Also student will be able to solve partial differential equations by using Lagrange's method and Charpit's method.

B.Sc/B.A III SEMESTER

1.3: Real Analysis:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with basic definitions, concepts of
	countable and uncountable sets, Completeness property of R, Archimedean property of R,
	Intervals, limit points and Balzano Weierstrass theorem.
CO-2	By the end of this unit student shall be familiar with basic definitions of sequences, Cauchy
	sequence and their convergence. Also student will be able to find the limit of sequence.
CO-3	By the end of this unit student will be able to test an infinite series for convergence and
	divergence by the various tests like comparison test, Ratio test, Raabes' test, Cauchy root
	test,Lebnitz's test etc.
CO-4	By the end of this unit student shall be familiar with basic definitions, concepts and
	examples of Riemann integral. Also student will be able to learn necessary and sufficient
	conditions for integrability.

1.4: Integral Calculus:

SL NO	PARTICULARS
Course	By the end of this course student shall be familiar with basic definitions and concepts of
Outcomes	integrals. Student will be able to evaluate the integral of rational and irrational function, definite integrals, reduction formulae, Beta function and Gamma function. Also student shall be familiar with basic definitions and concept of double and triple integrals and their application in area, volumes and surfaces of solid of revolution.

B.Sc/B.A IV SEMESTER

1.5: Algebra:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with basic definitions of Groups (Abelian and non abelian), group of integer under addition and multiplication modulo n, cyclic group and complex roots of unity.
CO-2	By the end of this unit student will be able to learn circle group and group of symmetries (an isosceles triangle, an equilateral triangle, a rectangle and a square), permutations and group of permutations.
CO-3	By the end of this unit student will be able to learn the homomorphism and isomorphism of groups, subgroups and necessary and sufficient conditions for a non empty set to be subgroup. Also in addition, student will be able to know order of an element, cosets, index of group, Lagrange's theorem, normal subgroups with examples and Quotient group.
CO-4	By the end of this unit student shall be familiar with definitions and concepts of rings, sub rings, ideals, integral domain and field with examples. Also student will be able to learn commutative and non commutative rings and ring of integers with addition modulo n.

B.Sc/B.A V SEMESTER

1.6: Linear Programming:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with basic definitions and concepts of linear
	programming problem and formations of LPP and their solution by graphical method.
	Student will also able to know convex sets, supporting and separating hyper planes.
CO-2	By the end of this unit student will be able to learn the theory of simplex method, simplex
	method in tableau format and solution of a linear programming problem by simplex
	method.
CO-3	By the end of this unit student will be able to solve linear programming problem by
	introducing artificial variables by Big M method and two phase methods.
CO-4	By the end of this unit student will be able to learn Duality and formulation of duality.
	Student will also be able to develop the primal-dual relationship and economic
	interpretation of the dual problem.

B.Sc/B.A VI SEMESTER

1.7: Linear Algebra:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of vector
	spaces, vector subspaces, quotient spaces and algebra of subspaces.
CO-2	By the end of this unit student will be able to learn linear combinations of vectors, linear
	span and linear independence of vectors, basis, dimensions and dimensions of subspaces.
CO-3	By the end of this unit student will be able to learn linear transformations, null spaces,
	range, rank, nullity of a linear transformation and algebra of linear transformations.
CO-4	By the end of this unit student shall be familiar with definitions of dual spaces and dual
	basis, double dual and characteristic polynomials, eigen values and eigen vectors. Student
	will also be able to learn isomorphism, invertibility and change of coordinate matrix.

1.8: Vactor Calculus:

SL NO	PARTICULARS
Course Outcomes	By the end of this course student shall be familiar with basic definitions and concepts of vectors and reciprocal vectors. Student will be able to differentiate and partial differentiate the vector functions. Student will be able to learn dot product and cross product of two vectors, gradient, curl and divergence and applications of Green's theorem, Stokes's theorem and Gauss divergence theorem.

M.Sc/M.A I SEMESTER

1.1: Discrete Structures:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with recurrence relations, linear
	homogeneous recurrence relations and solution of recurrence relations with some examples.
CO-2	By the end of this unit student will be able to learn partially ordered sets, lattices, sub- lattices, direct product, Ideal lattice, modular and distributive lattices.
CO-3	By the end of this unit student will be able to understand Boolean algebra, Ideals in Boolean algebra, Boolean rings, Boolean functions, Karnaugh maps and applications of Boolean algebra to switching theory.
CO-4	By the end of this unit student shall be familiar with definitions of graphs, sub-graphs, direct graph, relations and graphs, paths, circuits, Eulerian graph, Hamiltonian graphs and connected graphs.

1.2: Abstract Algebra-I:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with Simple groups, Conjugacy,
	Normalization, Centre of a group, Class equation of a group and its consequences,
	Theorems for finite groups, Cauchy's theorem, Sylow's theorem.
CO-2	By the end of this unit student will be able to learn Homomorphism, Endomorphism,
	Automorphism, Inner automorphism, Kernel of a homomorphism, Fundamental theorem
	on homomorphism of group, Group of automorphisms, Results on group homomorphism.
CO-3	By the end of this unit student will be able to Maximal subgroups, Compositionseries,
	Jordan-Holder theorem, Solvable groups, Commutator subgroups, Direct products
CO-4	By the end of this unit student shall be able to understand Ideals, Algebra of ideals,
	Principal ideal ring, Units and associates, Polynomials ring, Division and Euclidean
	algorithm for polynomials, Unique factorization theorem

1.4: Complex Analysis:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of analytic
	functions, power series of an analytic functions and their convergence, Taylor's and
	Laurent's series, singularities, residues and poles with problems.
CO-2	By the end of this unit student will be able to evaluate residues, Cauchy residue theorem
	and applications of residue theorem in evaluation of improper real integrals.
CO-3	By the end of this unit student will be able to learn conformal mapping with properties,
	Mobius transformation with examples.
CO-4	By the end of this unit student shall be able to understand maximum modulus theorem,
	Mittag-Leffler theorem, Rouche's theorem, Entire functions and analytic continuation.

1.5: Operation Research I:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of OR, Scope
	of OR, Different Models of OR, Opportunities and shortcomings of OR,
CO-2	By the end of this unit student will be able to Dual simplex method, Revised Simplex

	Method
CO-3	By the end of this unit student will be able to Assignment and Transportation problems
CO-4	By the end of this unit student will be able to Theory of games ,Integer LP.

M.Sc/M.A II SEMESTER

2.1: Abstract Algebra-II:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of Embedding
	of rings, Ring of residue classes, Fundamental theorem on homomorphism of ring, Prime
	ideals, Maximal ideal.
CO-2	By the end of this unit student will be able to Euclidean ring, Properties of Euclidean ring,
	Module, sub-module, Module homomorphism, Linear sum and direct sum of sub-module
CO-3	By the end of this unit student will be able to Extension fields, Simple field extension,
	Algebraic field extension, Minimal polynomial, Roots of polynomials, Multiple roots, Splitting
	field.
CO-4	By the end of this unit student will be able to Automorphism of field, Fixed field, Normal
	extension, Galois group: Examples and characterizations, Construction with straight edge
	and compass.

2.2: Fluid Dynamics:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of fluids,
	Lagrangian and Eulerian methods, local and individual time rate of change, equation of
	continuity and boundary surface.
CO-2	By the end of this unit student will be able to understand the motion of inviscid fluids,
	Euler's equation of motion, Bernoulli's equation, Lagrange's equation, Cauchy integral and
	Helm-Holtz equation.
CO-3	By the end of this unit student will be able to learn impulsive motion of a fluid, Energy
	equation of inviscid fluid, Irrotational motion, Flow and circulation, Kelvin's circulation
	theorem, Stoke's theorem, Green's theorem and mean value of velocity potential over a
	spherical surface.
CO-4	By the end of this unit student will be able to learn motion in two dimensions, Stream
	functions, Complex potential, Source, Sink, Doublet, Milne-Circle theorem and Blausius
	theorem.

2.3: Operation Research II:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of Inventory control, Functional role of inventory control, Classification of EOQ models with shortages
	and without shortages.
CO-2	By the end of this unit student will be able to Queuing theory, Characteristics of Queuing system, Probability distribution in queuing system, Single served queuing model, M M 1 queuing models, Multiple server queuing models.

CO-3	By the end of this unit student will be able to Markov chain, Application of Markov
	analysis, State and transition probabilities, Steady state conditions, Sequencing problems,
	Processing n jobs through two and three machines.
CO-4	By the end of this unit student will be able to Dynamic programming, Dynamic programming
	under certainty, Non-linear programming methods, Quadratic programming, Kuhn-Tucker
	conditions.

M.Sc/M.A III SEMESTER

3.2: Differential Equations:

SL NO	PARTICULARS
CO-1	By the end of this unit student will be able to describe existence and uniqueness and
	solutions of ordinary differential equation and Picard's iteration method with examples.
CO-2	By the end of this unit student shall be familiar with definitions and concepts of power
	series, Ordinary and singular points. Also student will be able to find power series solution of ordinary differential equations (Legendre's differential equation and Bessel's Differential equation) and generating functions
	Differential equation) and generating functions.
CO-3	By the end of this unit student will be able to classify the second order partial differential equation and reduce them to Canonical form. Also student will be able to understand the
	concept of separation of variable solution.
CO-4	By the end of this unit student will be able to find the solution of heat equation, wave equations and Laplace equations with the help of separation of variable solution. Also student will be able to find the solution of second order nonlinear partial differential equation.

3.4: Mathematical Statistics:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of Elements of
	probability, Sample space, Discrete probability, Baye's theorem, Random variables and
	distribution functions, Mathematical expectations and moments.
CO-2	By the end of this unit student will be able to Some standard discrete and continuous
	univariate distributions: Binomial, Poisson, Normal, Gamma and Beta distributions.
CO-3	By the end of this unit student will be able to Correlation, Rank correlation, Regression
	line, Multiple and partial correlation of three variables only, Data reduction techniques,
	Canonical correlation.
CO-4	By the end of this unit student will be able to Concepts of sampling, Stratified sampling and
	systematic sampling, Test of hypothesis: t,z, chi square test.

3.5: Calculus of variations:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of Variation
	of functional, Continuity and differentiability of functional, Necessary condition for an
	extremum, Euler's equation, Variational problems in parametric form, Functional depending on
	higher order derivatives and variational problems with subsidiary condition.
CO-2	By the end of this unit student will be able to The isoperimetric problem, Invariance of
	Euler's equation under coordinate transformation, General variational of functional, Variable
	end point problems, Transversality condition transversal theorem, Weierstrass-Endmann corner
	condition.

CO-3	By the end of this unit student will be able to Sufficient condition for extremum: second variation, Legendre's and Jacobi's necessary condition, Canonical transformation, Noether's theorem, The principle of least action, Conservation law, Hamilton Jacobi's equations.
CO-4	By the end of this unit student will be able to Transformation of ODE and PDE into functionals and their solutions by Ritze, Galerkin, Collocation and Kantrovitch methods.

M.Sc/M.A IV SEMESTER

4.1: Measure and Integration:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of Lebesgue
	outer measure, Measure of open and closed sets, Borel sets, Measurablesets, Measure of
	cantor's ternary set, Non-measurable sets.
CO-2	By the end of this unit student will be able to Measurable functions, Algebra of measurable
	functions, Step functions, Characteristic function, Simple functions, Convergence in measure,
	Egoroff's theorem, Riesz theorem.
CO-3	By the end of this unit student will be able to Lebesgue Integral and their properties, General
	Lebesgue integrals, Lebesgue integrals for unbounded functions, Convergence theorems, Fatou
	Lemma.
CO-4	By the end of this unit student will be able toFunctions of bounded variations, Absolutely
	continuity, Variation function, Jordan-decomposition theorem, Indefinite integral and its
	characterizations, Differentiation of an integral, Lebesgue differentiation theorem.

4.2: Functional Analysis:

SL NO	PARTICULARS
CO-1	By the end of this unit student shall be familiar with definitions and concepts of normed
	linear space with properties, Banach space, Quotient space and norms with examples.
CO-2	By the end of this unit student will be able to understand bounded linear operators, Hahn-
	Banach theorem, Open mapping theorem and closed graph theorem.
CO-3	By the end of this unit student will be able to describe Inner product spaces with properties,
	Hilbert space, Orthogonal complement and Projection theorem, Riesz representation
	theorem and orthonormal sets.
CO-4	By the end of this unit student shall be describe the different operator on Hilbert space like
	self-adjoint operator, Normal operators, Unitary operators and orthogonal projection
	operators.

4.4: Fluid Mechanics:

SL NO	PARTICULARS
CO-1	By the end of this unit student will be able to understand the motion of cylindrical and
	elliptical cylinders in details with examples.
CO-2	By the end of this unit student will be able to understand the motion of sphere, motion of a
	sphere in an infinite mass of the liquid rest at infinity and pressure distribution.
CO-3	By the end of this unit student will be able to know the general theory of stress and rate of
	strains, Newton's law of viscosity, Principal stresses and principal directions,
	Transformation of the stress components and rate of strain components, Relation between
	stresses and rate of strain components, Translation, Rotation and rate of deformation.

CO-4	By the end of this unit student will be able to describe Navier-Stoke's equation of motion,
	Energy equation of inviscid fluid and energy dissipation due to viscosity.